Sharifi O, Golmohammad M, Soozandeh M, Oskouee M. Effects of Al Doping on the Properties of Li7La3Zr2O12 Garnet Solid Electrolyte Synthesized by Combustion Sol-gel Method. IJMSE 2022; 19 (3) :1-10
URL:
http://ijmse.iust.ac.ir/article-1-2631-en.html
Abstract: (8229 Views)
Li7La3Zr2O12 (LLZO) garnets are one of the promising materials as electrolytes for solid-state batteries. In this study, Li7-3xAlxLa3Zr2O12 (x= 0.22, 0.25, and 0.28) garnet is synthesized using the combustion sol-gel method to stabilize the cubic phase for higher ionic conductivity. The X-ray diffraction (XRD) results of as-synthesized powders reveal that by addition of 0.22 and 0.25 mole Al, the tetragonal phase still co-exist, whereas 0.28 mole Al addition resulted in a single cubic phase. Afterward, the as-synthesized powders are pressed and sintered at 1180°C for 10h. The hardness evaluation revealed that Al addition increases the hardness that shows better resistance against Li dendrite formation. Besides, the secondary electron microscopy results demonstrate that the dopant has not a huge impact on particle size and grain growth whereas the porosity content has been changed. Finally, the investigation of samples' electrochemical behavior reveals that the addition of Al increases the ionic conductivity of samples by increasing the density and stability of the cubic phase as well. The results declare that the 0.25 Al sample has the highest ionic conductivity. This behavior is thought to be due to the promotion of sintering and increment of bulk ionic conductivity by doping Al.
Full-Text [PDF 666 kb]
(3100 Downloads)
- Al-doped LLZO solid electrolyte is successfully synthesized by using the combustion sol-gel technique
- The addition of Al dopant promotes the cubic phase by increasing the lithium vacancy concentration and destabilizing lithium in the tetragonal phase
- The addition of Al promotes LLZO sintering and increases the density of the LLZO sample.
- Li6.25Al0.25La3Zr2O12 showed the highest ionic conductivity at room temperature that can be a good candidate for solid electrolyte batteries.
Type of Study:
Research Paper |
Subject:
Ceramics