Search published articles


Showing 2 results for Tensile Strength

Mir Habibi A.r., Mir Habibi A.r., Mir Habibi A.r.,
Volume 1, Issue 1 (3-2004)
Abstract

The continuity and thickness of the coating layer, are the most important factors in wetting properties and strength of carbon fibers. These factors are crucial in the quality of metal matrix composites made with carbon fibers. In this research the Polyacrylonitrail base carbon fibers have been nickel coated with 0.2, 0.5, 0.8 and 11 ,u in thickness, by the electroless method. The effect of the thickness of nickel coating on surface condition and also the tensile strength of the carbon fibers has been investigated. The study of surface condition of the coated carbon fibers by SEM showed that the nickel coating at the thickness of about 0.5 pin has the best continuity oil the carbon fibers. The results of tensile tests of carbon fibers coated with different thickness of nickel showed that increasing the thickness of coating layer decreases the overall strength of fibers.
Dillibabu Surrya Prakash, Narayana Dilip Raja,
Volume 18, Issue 4 (12-2021)
Abstract

Hybrid composites consisting of AA6061 matrix reinforced with TiB2 (2, 4, 6, and 8 wt. %), Al2O3 (2 wt. %) particles were produced by the sintering process. In comparison to the base material AA6061, the composite produced had improved mechanical properties. The sintered composites' mechanical properties, such as tensile strength and hardness, are measured and compared to the wear-tested specimen. Optical micrographs reveal that composites were riddled with defects like blowholes, pinholes, and improper bonding between the particulates before sintering. However, the post-sintered optical micrograph showed that the defects were greatly suppressed. Micrographic images revealed the changes in surface characteristics before and after wear. Until a sliding distance of 260 m, the wear rate of the hybrid composites was kept lower than that of the base material. The coefficient of all the composite materials produced for this study was noted to be less than that of the base material. The results reveal that the hardness of hybrid composites having 4 wt. % and 6 wt. % of TiB2 particulates increased by 5.98 % and 1.35 %. Because of the frictional heating during the wear test, the tensile properties lowered by up to 49.6%. It is concluded that the hybrid composites having 4 wt. % and 6 wt. % of TiB2 particulates exhibited less wear rate for extended sliding distance, good hardness, moderate tensile strength, and decent elongation percentage compared to its counterparts.


Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb