Showing 2 results for Corrosion Inhibitor
Dehghanian C., Saremi M., Mohammadi Sabet M.,
Volume 2, Issue 1 (3-2005)
Abstract
The synergistic behavior of molybdate and phosphate ions in mitigating the corrosion of mild steel in simulated cooling water was evaluated performing potentiodynamic polarization and impedance spectroscopy tests. Phosphate and molybdate showed a synergistic effect on corrosion inhibition of steel in simulated cooling water. The observed reduction in anodic and cathodic current densities could be the consequence of incorporation of both phosphate and molybdate ions in forming a protective layer on the surface. The charge transfer resistance of the protective layer formed on steel surface was much greater in presence of both ions in solution than that when each inhibitor used alone.
C. Dehghanian, Y. Mirabolfathi Nejad,
Volume 5, Issue 1 (3-2008)
Abstract
Abstract: Despite having a number of advantages, reinforced concrete can suffer rebar corrosion
in high–chloride media, resulting in failure of reinforced concrete structures. In this research the
corrosion inhibition capability of the mixture of calcium and ammonium nitrate of steel rebar
corrosion was investigated in the simulated concrete pore solution. Cyclic polarization and
Electrochemical Impedance Spectroscopy (EIS) techniques were applied on steel concrete pore
solution containing 2 weight percent sodium chloride (NaCl). Results show that such mixtures had
higher inhibition efficiency than calcium nitrate alone. The optimum concentration of the inhibitor
mixture was determined to be 45 mgr/lit.