Showing 15 results for Copper
Mir Habibi A.r., Rabiei M., Agha Baba Zadeh R., Moztar Zadeh F., Hesaraki S.,
Volume 1, Issue 3 (9-2004)
Abstract
ZnS : Cu phosphors were prepared by using laboratory grade chemicals through coprecipitating Cu along with ZnS using H2S and thiourea. Photo- and electroluminescence studies indicate that these phosphors have better emission characteristics compared to the phosphors in which activator is externally added. Phosphors with luminescence at ~530nrn were prepared. The difference between the characteristic properties of the samples seems to be due to formation of nanoparticles during the preparation of the samples by different methods.
Rigaud M., Palco S., Paransky E.,
Volume 3, Issue 1 (6-2006)
Abstract
Wear of various basic refractory materials to substitute to currently used magnesia chrome bricks has been studied, measuring matte and slag penetration and dissolution, through different cup and rotary slag tests. High magnesia with and without impregnation, magnesia graphite, magnesia-alumina spinel with and without impregnation, olivine-magnesia and olivine magnesia- graphite bricks, as well as magnesia-graphite and olivine magnesia castables, have been tested. It has been shown that carbon impregnation and graphite introduction into basic refractories are feasible ways to enhance their corrosion-dissolution and penetration resistance against fayalite as well as calcium-ferrite slags. Olivine-based refractories (castables or bricks) may be considered as viable candidates to use in copper-making furnaces. At this point, evaluation of the thermo-mechanical properties of this new class of materials is still missing.
H. Ghasemi, M. A. Faghihi Sani, Z. Riazi,
Volume 4, Issue 3 (12-2007)
Abstract
Abstract: The effect of phase development on peel strength of alumina-copper metalized joint has
been investigated. The alumina-copper joint was prepared in three stages. The alumina substrate
was, first, metalized at 1500°C in H2-furnace by a new formulation. In the second step, a nickel
layer was electroplated on the metalized layer with approximately 10µm thickness. Finally, copper
strips were bonded to metalized alumina with Ag-Cu (72-28) filler metal. The peel strength of the
joint was 9.5±0.5 Kg/cm which shows approximately 30% increase in comparison to previous
works. By study of fracture surface and crack propagation path, it has been concluded that this
increase is due to the formation of more spinel phase.
B. Tolaminejad, A. Karimi Taheri, H. Arabi, M. Shahmiri,
Volume 6, Issue 4 (12-2009)
Abstract
Abstract: Equal channel angular extrusion (ECAE) is a promising technique for production of ultra fine-grain (UFG) materials of few hundred nanometers size. In this research, the grain refinement of aluminium strip is accelerated by sandwiching it between two copper strips and then subjecting the three strips to ECAE process simultaneously. The loosely packed copper-aluminium-copper laminated billet was passed through ECAE die up to 8 passes using the Bc route. Then, tensile properties and some microstructural characteristics of the aluminium layer were evaluated. The scanning and transmission electron microscopes, and X-ray diffraction were used to characterize the microstructure. The results show that the yield stress of middle layer (Al) is increased significantly by about four times after application of ECAE throughout the four consecutive passes and then it is slightly decreased when more ECAE passes are applied. An ultra fine grain within the range of 500 to 600 nm was obtained in the Al layer by increasing the thickness of the copper layers. It was observed that the reduction of grain size in the aluminium layer is nearly 55% more than that of a ECA-extruded single layer aluminium billet, i.e. extruding a single aluminium strip or a billet without any clad for the same amount of deformation. This behaviour was attributed to the higher rates of dislocations interaction and cell formation and texture development during the ECAE of the laminated composite compared to those of a single billet
A. Nikfahm, I. Danaee, A. Ashrafi, M. R. Toroghinejad,
Volume 11, Issue 2 (6-2014)
Abstract
In this research accumulative roll bonding process as sever plastic deformation process was applied up to
8 cycles to produce the ultrafine grain copper. Microstructure of cycle 1, cycle 4 and cycle 8 investigated by TEM
images. By analyzing TEM images the grain size measured below 100 nm in cycle 8 and it was with an average grain
size of 200 nm. Corrosion resistance of rolled copper strips in comparing with unrolled copper strip was investigated
in acidic (pH=2) 3.5 wt. % NaCl solution. Potentiodynamic polarization and EIS tests used for corrosion resistance
investigations. The corrosion morphologies analyzed by FE-SEM microscopy after polarization test and immersion for
40 hours. Results show that the corrosion resistance decreased up to cycle 2 and increased after rolled for forth time.
The corrosion degradation was more intergranular in cycle 2 and unrolled counterpart. It was more uniform rather
than intergranular type in cycle 8. Corrosion current density in unrolled sample (2.55 µAcm
-2
) was about two times of
that in cycle 8 (1.45 µAcm
-2
). The higher corrosion rate in cycle 2 in comparison with others was attributed to unstable
microstructure and increase in dislocation density whereas the uniform corrosion in cycle 8 was due to stable UFG
formation
M. Ghanbari, M. R. Aboutalebi, S. G. Shabestari,
Volume 11, Issue 2 (6-2014)
Abstract
Geometrical design of the spiral crystal selector can affect crystal orientation in the final single crystal
structure. To achieve a better understanding of conditions associated with the onset of crystal orientation in a spiral
crystal selector, temperature field was investigated using three-dimensional finite element method during the process.
Different geometries of spiral crystal selector were used to produce Al- 3 wt. % Cu alloy single crystal using a
Bridgman type furnace. The Crystal orientation of the samples was determined using electron backscattered
diffraction (EBSD) and optical microscopy. Analysing the temperature field in the crystal selector revealed that, the
orientation of growing dendrites against liquidus isotherm in the spiral selector was the reason for crystal
misorientation which differs in various selector geometries. Increasing the take-off angle from 35° up to 45° increases
the misorientation with respect to <001> direction. Further increase of take-off angle greater than 45° will decrease
the crystal misorientation again and the efficiency of the selector to produce a single grain is decreased.
H. Torabzadeh Kashi, M. Bahrami, J. Shahbazi Karami, Gh. Faraji,
Volume 14, Issue 2 (6-2017)
Abstract
In this paper, cyclic flaring and sinking (CFS) as a new severe plastic deformation (SPD) method was employed to produce the ultrafine grain (UFG) copper tubes. The extra friction has eliminated in the CFS method that provided the possibility for production of longer UFG tubes compared to the other SPD methods. This process was done periodically to apply more strain and consequently finer grain size and better mechanical properties. The CFS was performed successfully on pure copper tubes up to eleven cycles. Mechanical properties of the initial and processed tubes were extracted from tensile tests in the different cycles. The remarkable increase in strength and decrease in ductility take placed in the CFS-ed tubes. The material flow behavior during CFS processing was analyzed by optical microscopy (OM), and a model was presented for grain refinement mechanism of pure copper based on multiplication and migration of dislocations (MMD). This mechanism caused that the initial grains converts to elongated dislocation cells (subgrains) and then to equiaxed ultrafine grains in the higher cycles. The CFS method refined the microstructure to fine grains with the mean grain size of 1200nm from initial coarse grain size of 40µm
M. Shahraki, S. M. Habibi-Khorassani, M. Noroozifar, Z. Yavari, M. Darijani, M. Dehdab,
Volume 14, Issue 4 (12-2017)
Abstract
The inhibition performances of nafcillin (III), methicillin (II) and penicillin G (I) on the corrosion of copper in HCl was studied and tested by weight loss, Tafel polarization, SEM, UV-vis spectrophotometry, molecular dynamics method and quantum chemical calculations. Polarization curves indicated that the studied inhibitors act as mixed-type inhibitors. The values of inhibition efficiency and surface coverage were found to follow the order: Blank
ads, indicated that the adsorption of three inhibitors was a spontaneous process. The SEM micrographs confirmed the protection of copper in a 1 M HCl solution by penicillin G, nafcillin, and methicillin. The shape of the UV/vis spectra of inhibitors in the presence of the immersion of Cu showed a strong support to the possibility of the chemisorbed layer formation on Cu surface by nafcillin (between nafcillin and Copper) and physisorption between penicillin and methicillin with copper. DFT calculations were performed to provide further insight into the inhibition efficiencies which were determined experimentally. Molecular dynamics (MD) simulations were applied to find the most stable configuration and adsorption energies of penicillin G, nafcillin and methicillin molecules on Cu (110) surface. The interaction energy followed the order: nafcillin (III)> methicillin (II)> penicillin G (I), which confirmed that nafcillin has the strongest interaction with the metal surface. The obtained results from experimental and theoretical methods were in reasonable agreement.
R. Katal, A. Azizi, M. Gharabaghi,
Volume 17, Issue 2 (6-2020)
Abstract
Present paper investigates the dissolution behavior of copper from chalcopyrite concentrate sample using cupric chloride solution in detail. Response surface modeling (RSM) in combination with d-optimal design (DOD) was utilized for modeling and optimizing the cupric chloride leaching process. At first, a quadratic polynomial model was developed for the relationship between the recovery of copper and influential factors. The predictions indicated an excellent agreement with the experimental data (with R2 of 0.9399). Then, the effects of main factors including pH (1-4), liquid/solid ratio (2-7 mL/g), temperature (70-90 °C), CuCl2 concentration (6-35 g/L), and leaching time (0.5-16) were determined. The findings demonstrated that the temperature and CuCl2 concentration were the most effective factors on the dissolution rate of copper from chalcopyrite sample, while liquid/solid ratio had the lowest impact. The recovery of copper increased linearly with an increment in the liquid/solid ratio and the decrease in the pulp pH. Additionally, the recovery enhanced by increasing the temperature and CuCl2 concentration owing the generation of Cu–Cl complexes species and reached a plateau point and then almost remained unchanged. Meanwhile, it was found out that the recovery of copper was independent of the interaction between factors. Moreover, the optimization of leaching process was carried out by Design Expert (version 7) software and desirability function method and the highest recovery of copper was found to be about 86.1% at a pH of ~1.4, temperature of 89 °C, liquid/solid ratio of 6.8 mL/g, CuCl2 concentration of 21.79 g/L and leaching time of ~8 h.
Reza Mirahmadi Babaheydari, Seyed Oveis Mirabootalebi, Gholam Hosein Akbari Fakhrabadi,
Volume 18, Issue 1 (3-2021)
Abstract
Cu-based alloys have a wide range of applications in the electronics industry, communications industry, welding industries, etc. Regarding the type and percentage of the second phase, changing in the alloying elements has a significant effect on the mechanical and electrical properties of copper composites. The aim of the present work is to synthesize, investigate, and compare the micro-structure, micro-hardness, and electrical properties of different Cu-based nanocomposites. For this purpose, Cu-Al, Cu-Al2O3, Cu-Cr, and Cu-Ti were fabricated via ball milling of copper with 1, 3, and 6 weight percentages. The vial speed was 350 rpm and the ball-to-powder weight ratio was kept at 15:1. The milling process was performed at different times in Argon. Next, the prepared composites were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS). Based on XRD patterns, crystallite size, lattice strain, and lattice constant were calculated by Rietveld refinement using Maud software. The results show a decrease of crystallite size, and an increase of the internal strain and lattice constant by rising the alloying elements in all composites. Then, the produced powders compressed via the cold press and annealed at 650˚C. Finally; the micro-hardness and the electrical resistance of the manufactured tablets were measured. The results of these analyses show that micro-hardness is increased by enhancement of the reinforcement material, due to the rising of the work hardening. Cu-6wt%Ti with 312 Vickers and Cu-1wt%Al2O3 with 78 Vickers had the highest and lowest micro-hardness, respectively. Moreover, the results of the electrical resistance indicate a dramatic rise in the electrical resistance by increasing the amount of alloying material, which Cu-1wt%Al with 0.26 Ω had the highest electrical conductivity.
Usha Vengatakrishnan, Kalyanaraman Subramanian, Vettumperumal Rajapand, Dhineshbabu Nattanmai Raman,
Volume 18, Issue 3 (9-2021)
Abstract
Copper oxide (CuO) nanostructure particles were prepared using KOH/NaOH catalyst by low cost precipitation method and characterized by powder X-ray diffraction (PXRD), scanning electron microscope (SEM) and energy dispersive X-ray spectra (EDX) analysis. The photocatalytic dye degradation study of pure CuO nanostructure particles are analysed against two azo dyes (Direct black 38 (Black-E) and Congo red) under ultraviolet (UV) and solar irradiation. The release of major active species (*OH) in the photocatalytic degradation by as prepared CuO nanostructure particles were investigated by photoluminescence (PL) spectra with two different excitation wavelength (325and 355nm). The band gap of CuO nanostructure particles was calculated from diffuse reflectance spectra. The photocatalytic effect of CuO nanostructure particles is confirmed from the UV – Vis and photoluminescence spectra and also, further confirmed from the kinetic studies under UV and solar radiations. The photocatalytic degradation results revealed that 16.35% and 7.5% of black E and Congo red dye was degraded under UV, while it was 47.2% and 17.6% under solar light. The influence of pH on the photodegradation and change in the reaction temperature under solar irradiation were also analysed
Hettal Souheila, Ouahab Abdelouahab, Rahmane Saad, Benmessaoud Ouarda, Kater Aicha, Sayad Mostefa,
Volume 19, Issue 1 (3-2022)
Abstract
Copper oxide thin layers were elaborated using the sol-gel dip-coating. The thickness effect on morphological, structural, optical and electrical properties was studied. Copper chloride dihydrate was used as precursor and dissolved into methanol. The scanning electron microscopy analysis results showed that there is continuity in formation of the clusters and the nuclei with the increase of number of the dips. X-ray diffractogram showed that all the films are polycrystalline cupric oxide CuO phase with monoclinic structure with grain size in the range of 30.72 - 26.58 nm. The obtained films are clear blackin appearance, which are confirmed by the optical transmittance spectra. The optical band gap energies of the deposited films vary from 3.80 to 3.70 eV. The electrical conductivity of the films decreases from 1.90.10-2 to 7.39.10-3 (Ω.cm)-1
Hamid Ansari, Saeed Banaeifar, Reza Tavangar, Alireza Khavandi, Soheil Mahdavi,
Volume 19, Issue 3 (9-2022)
Abstract
The present study aimed to assess the effect of replacing copper as a multi-functional ingredient in the brake pad material with potassium titanate platelet (PTP) and a particular type of ceramic fiber (CF) copper-free composite. Chase dynamometer tests were conducted to compare a brake padchr('39')s tribological behavior when PTP and CF are added to the composition with that of the copper-bearing pad. The results concluded that PTP and CF demonstrated promising outcomes such as a stable coefficient of friction (COF), lower wear rate, and better heat resistance in copper-free friction composite. Scanning electron microscope (SEM/EDS) analysis was conducted to investigate the role of main elements such as Ti, Fe, K, O, and C on the formation of contact plateaus (CPs) upon the worn surface of friction composites. PTP maintained both continuous contact and smooth friction braking application of a brake pad. The uniform distribution of Ti on the wear track on the disc worn surface depicts the role of PTPs on stabilizing the friction film formation and eventually on the stability of COF.
Saeedeh Mansoury, Maisam Jalaly, Mohammad Khalesi Hamedani,
Volume 20, Issue 4 (12-2023)
Abstract
In this study, an epoxy-based nanocomposite reinforced with copper oxide-graphene oxide hybrid was investigated. Initially, the hybrid powder of CuO–GO with a weight ratio of 9:1 was prepared. The hybrid filler with different weight percentages ranging from 0.1–0.5 was used to reinforce the epoxy resin. The prepared samples were analyzed using XRD, FTIR, FESEM, TEM, and tensile testing. According to the XRD results and SEM images, the hybrid powder was successfully prepared, and the mechanical testing results showed an improvement in tensile strength in the composite samples. The best composite sample in terms of tensile strength was the one containing 0.3 wt% of hybrid reinforcement, which exhibited a 73% increase in strength compared to the neat resin sample.
Muddukrishnaiah Kotakonda, Sajisha V.s, Aiswarya G, Safeela Nasrin Pakkiyan, Najamol A Alungal, Mayoora Kiliyankandi K, Divya Thekke Kareth, Naheeda Ashraf Verali Parambil, Saranya Sasi Mohan, Renjini Anil Sheeba, Sarika Puthiya Veettil, Dhanish Joseph, Nishad Kakkattummal, Afsal Bin Haleem Mp, Safeera Mayyeri, Thasneem Chemban Koyilott, Nasiya Nalakath, Samuel Thavamani B, Famila Rani J, Aruna Periyasamy, Chellappa V Rajesh, Rameswari Shanmugam, Marimuthu Poornima, Tina Raju, Roshni E R, Sirajudheen Mukriyan Kallungal, Lekshmi Ms Panicker, Saranya K G, Shilpa V P,
Volume 21, Issue 3 (9-2024)
Abstract
Biogenic synthesis of papain-conjugated copper metallic Nanoparticles and their antibacterial and antifungal activities Papain metallic conjugated nanoparticles (Papain-CuNPs) were synthesised using Papain and CuSO4.5H2O. Papain-CuNPs were characterized using UV-visible spectroscopy, FT-IR, HR-TEM, XRD, FE-SEM, zeta potential, and a zeta sizer. The antibacterial activity of papain-CuNPs against human infectious microorganisms (Citrobacter spp, Pseudomonas aeruginosa and Candida albicans) was investigated. The mechanism of action of papain-CuNPs was evaluated using FE-SEM and HRTM. UV spectroscopy confirmed the plasma resonance (SPR) at 679 nm, which indicated the formation of papain-CuNPs. The FT-IR spectrum absorbance peaks at 3927, 3865, 3842, 3363, 2978, and 2900 cm-1 indicate the presence of O-H and N-H of the secondary amine, and peaks at 1643 and 1572 cm-1 represent C=O functional groups in Papain-CuNPs. EDAX analysis confirmed the presence of copper in the papain-CuNPs. The zeta potential (-42.6 mV) and zeta size (99.66 d. nm) confirmed the stability and size of the nanoparticles. XRD confirmed the crystalline nature of the papain-CuNPs. FE-SEM and HRTM showed an oval structure, and the nano particles' 16.71244–34.84793 nm. The synthesized papain-NPs showed significant antibacterial activity against clinical P. aeruginosa (15 mm). MIC 125 µg/ml) showed bactericidal activity against P. aeruginosa and the mechanism of action of Papain-NPs was confirmed using an electron microscope by observing cell damage and cell shrinking. Papain-CuNPs have significant antibacterial activity and are thus used in the treatment of P. aeruginosa infections