Showing 4 results for Chalcopyrite
A. H. Emami, M. Sh. Bafghi, J. Vahdati Khaki, A. Zakeri,
Volume 6, Issue 2 (6-2009)
Abstract
Abstract:
the changes of BET surface area of a mineral substance during intensive grinding process. Validity of the proposed
model was tested by the experiments performed using a natural chalcopyrite mineral as well as the published data. It
was shown that the model can predict the experimental results with a very good accuracy and can be used to predict
what may happen under the similar experimental conditions.
Based on experimental observations, a model has been developed to describe the effect of grinding time on
M.sh. Bafghi, A.h. Emami, A. Zakeri, J. Vahdati Khaki,
Volume 7, Issue 2 (6-2010)
Abstract
Abstract:
has been investigated. It has been shown that the mechanism of leaching reaction is diffusion through the product layer
and does not undergo any change as a result of mechanical activation in a wide range of experimental conditions.
Leaching rate is strongly influenced by milling intensity and the effect of ball to powder mass ratio is stronger than
milling time. Curve fitting of experimental data shows that leaching rate constant is approximately a linear function
of ball to powder mass ratio, while it obeys a power function with regard to the milling time.
The kinetics of chalcopyrite leaching in a ferric sulfate media for raw and mechanically activated samples
R. Katal, A. Azizi, M. Gharabaghi,
Volume 17, Issue 2 (6-2020)
Abstract
Present paper investigates the dissolution behavior of copper from chalcopyrite concentrate sample using cupric chloride solution in detail. Response surface modeling (RSM) in combination with d-optimal design (DOD) was utilized for modeling and optimizing the cupric chloride leaching process. At first, a quadratic polynomial model was developed for the relationship between the recovery of copper and influential factors. The predictions indicated an excellent agreement with the experimental data (with R2 of 0.9399). Then, the effects of main factors including pH (1-4), liquid/solid ratio (2-7 mL/g), temperature (70-90 °C), CuCl2 concentration (6-35 g/L), and leaching time (0.5-16) were determined. The findings demonstrated that the temperature and CuCl2 concentration were the most effective factors on the dissolution rate of copper from chalcopyrite sample, while liquid/solid ratio had the lowest impact. The recovery of copper increased linearly with an increment in the liquid/solid ratio and the decrease in the pulp pH. Additionally, the recovery enhanced by increasing the temperature and CuCl2 concentration owing the generation of Cu–Cl complexes species and reached a plateau point and then almost remained unchanged. Meanwhile, it was found out that the recovery of copper was independent of the interaction between factors. Moreover, the optimization of leaching process was carried out by Design Expert (version 7) software and desirability function method and the highest recovery of copper was found to be about 86.1% at a pH of ~1.4, temperature of 89 °C, liquid/solid ratio of 6.8 mL/g, CuCl2 concentration of 21.79 g/L and leaching time of ~8 h.
Yaser Moazzami, Mahdi Gharabaghi, Ziadin Shafaei Tonkaboni,
Volume 19, Issue 4 (12-2022)
Abstract
Ionic liquids as green solvents with high thermal stability, recyclability, low flash point, and low vapor
pressure, have been considered as a viable alternative in hydrometallurgical processes. In this study the leaching
kinetics of chalcopyrite concentrate was investigated using 1-Butyl-3-methylimidazolium hydrogen sulfate
(BmimHSO4) as an acidic ionic liquid. The Effect of operational parameters, including temperature, BmimHSO4
concentration, H2O2 concentration, stirring speed, solid-to-liquid ratio, and particle size on the rate of copper
dissolution of CuFeS2 were examined systematically. The highest Cu efficiency (ca. 97%) was achieved using 40%
(w/v) BmimHSO4, 30 %v/v H2O2, and 10 g.L-1 solid to liquid ratio for particle sizes less than 37 μm at 300 rpm and
45°C after 180 min leaching time. Kinetics study using Shrinking Core Model (SCM) revealed that CuFeS2 leaching
process using BmimHSO4 follows chemical reaction-controlled process. Under these circumstances, the calculated
activation energy was 46.66 KJ/mol. Moreover, the orders of reaction with respect to BmimHSO4 and H2O2
concentration, solid to liquid ratio and particle size were estimated to be 0.539, 0.933, −0.676 and −1.101
respectively. The obtained Arrhenius constant was found to be 0.26 106. The calculation of apparent activation
energy using “time given to a fraction method” revealed that the leaching mechanism remains the same over the
course of time.