Search published articles


Showing 3 results for Cathodic Protection

S.r. Allahkaram, R. Shamani,
Volume 6, Issue 2 (6-2009)
Abstract

Abstract: The risks of alternating current (AC) corrosion and overprotection increasingly demand new criteria for
cathodically protected pipelines. To assess the risk of AC corrosion, new cathodic protection (CP) criteria have been
proposed based on DC/AC current densities measurements using coupons. The monitoring system designed for this
project was based on the instant-off method, with steel coupons simulating coating defects on a buried pipeline. The
problems associated with the instantaneous off-potential measurements have been attributed to a non-sufficient time
resolution. In present study, it has been possible to determine the de-polarisation of steel coupon within a few
milliseconds after disconnecting the coupon from the DC/AC power source, by increasing data acquisition rate. For
this, a monitoring system was developed in order to measure the IR-free potential together with the DC/AC current
densities. The monitoring system was utilized for both laboratory experiments and site survey to study the mechanism
and the condition of AC corrosion, its mitigation and more importantly to define new CP criteria.


K. Susilo, A. Ahmadi, O. S. Suharyo, P. Pratisna,
Volume 14, Issue 2 (6-2017)
Abstract

Indonesian Navy (TNI AL) is the main component for Maritime Security and Defence. Because of that, TNI AL needs Indonesian Warship (KRI) to covered Maritime area. The main requirement from KRI is fulfilled by demand. To pock of fuel demand from KRI at Naval Base, it needs a new pipeline of fuel distribution network system. The pipeline network system used for maximum lifetime must be protected from corrosion. Basically, there are five methods of corrosion control such as change to a more suitable material, modification to the environment, use of protective coating, design modification to the system or component, and the application of cathodic or anodic protection. Cathodic protection for pipeline available in two kinds, namely Sacrifice Anode and Impressed Current Cathodic Protection (ICCP). This paper makes analysis from design of Impressed Current Cathodic Protection and total current requirement in the method. This paper showed both experimental from speciment test and theoritical calculation. The result showed that design of Impressed Current Cathodic Protection on fuel distribution pipeline network system requires voltage 33,759 V(DC), protection current 6,6035 A(DC) by theoritical calculation and 6,544 A(DC) from pipeline specimen test, with 0,25 mpy for corrosion rate. Transformer Rectifier design needs requirements 45 V with 10 A for current. This research result can be made as literature and standardization for Indonesian Navy in designing the Impressed Current Cathodic Protection for fuel distribution pipeline network system.


M. Karimi Sahnesarayi, H. Sarpoolaky, S. Rastegari,
Volume 16, Issue 2 (6-2019)
Abstract

In this study nanosized TiO2coatings on the 316L stainless steel substrate were prepared by means of dip-coating technique in which thickness of the coating layer increased byrepeating the coating cycles in two different routes: (I) dipping and drying,respectively, were repeated one, three and five times and finally the dried coated sample was heat treated (single); (II) multiple heat treatment performed after each dipping and drying cycle, respectively.The structural, morphological and optical characterizations of coatings as well as thickness of coatings were systematically studied.The photocatalytic activity of the various TiO2 coatings was investigated based on the degradation of an aqueous solution of Methyl orange.Moreover, thecorrosion protective properties of coatings were evaluated in both dark and UV illumination conditions based on the obtained polarization curves. The results indicated 1.75 times improvement in photocatalytic reaction rate constant, a two orders of magnitude decrease in corrosion current density in dark condition and about 140 mV electrode potential reduction under UV illumination with optimum coating preparation procedure, repeating the cycle from dipping to heat treatment three times, than the sample prepared with one time coating and heat treatment since this procedure provided not only high thickness and defect-free coating but also transparent one.


Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb