Showing 5 results for M. Soltanieh
M. Farhani,, M. Soltanieh, M. R. Aboutalebi,
Volume 5, Issue 3 (Summer 2008 2008)
Abstract
Abstract: Dissolution and recovery of Mn-Al compacts with and without a chloride flux was
studied by taking samples from the melt after addition of the compact. Events occurring after the
addition of the compacts into the melt were studied using water quenched specimens after holding
them for a specified time in molten state. The cross sections of these specimens were characterized
by SEM as well as optical imaging. The results showed that an optimized amount of flux (10 to
15%wt. in this research) considerably decreases the time to reach more than 90% recovery in
comparison with non-fluxed compacts. The flux caused the intermetallic forming reactions to be
started considerably sooner in fluxed compacts in comparison with the non-fluxed compact.
Consequently, the incubation time decreased from about 180 seconds for non-fluxed compacts to
less than 3 seconds for compacts with 10%wt. flux.
M. Mossanef, M. Soltanieh,
Volume 5, Issue 4 (Autumn 2008 2008)
Abstract
Abstract: The possibility of vanadium carbide coating formation on AISI L2 steel was studied in molten salt bath containing 33 wt% NaCl- 67 wt% CaCl2. In this research, the effects of time, temperature and bath composition on growing layer thickness were studied. The vanadium carbide coating treatment was performed in the NaCl-CaCl2 bath at 1173, 1273 and 1373 K temperatures for 3, 6, 9 hours and in bath containing 5, 10, 15, 25 wt% ferrovanadium. The presence of VC formed on the surface of the steel substrate was confirmed by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction analysis. The layer thickness of vanadium carbide and surface hardness ranged between 4.8 to 25.7 µm and 2645 to 3600 HV, respectively. The kinetics of layer growth was analyzed by measuring the depth of vanadium carbide layer as a function of time and temperature. The mean activation energy for the process is estimated to be 133 kJ/ mol.
H. Aghajani, M. Soltanieh, F. Mahboubi, S. Rastegari and Kh. A. Nekouee,
Volume 6, Issue 1 (winter 2009 2009)
Abstract
Abstract: Formation of a hybrid coating by the use of plasma nitriding and hard chromium electroplating on the
surface of H11 hot work tool steel was investigated. Firstly, specimens were plasma nitrided at a temperature of 550
°C for 5 hours in an atmosphere of 25 vol. % H2: 75 vol. % N2. Secondly, electroplating was carried out in a solution
containing 250 g/L chromic acid and 2.5 g/L sulphuric acid for 1 hour at 60 °C temperature and 60 A/dm2 current
density. Thirdly, specimens were plasma nitrided at a temperature of 550 °C for 5 and 10 hours in an atmosphere of
25 vol. % H2: 75 vol. % N2. The obtained coatings have been compared in terms of composition and hardness. The
compositions of the coatings have been studied by X-ray diffraction analysis. The surface morphology and elemental
analysis was examined by using scanning electron microscopy. The improvement in hardness distribution after third
step is discussed in considering the forward and backward diffusion of nitrogen in the chromium interlayer. Also, the
formed phases in the hybrid coating were determined to be CrN+Cr2N+Cr+Fe2-3N+Fe4N.
R. Khoshhal, M. Soltanieh, M. Mirjalili,
Volume 7, Issue 1 (winter 2010 2010)
Abstract
Abstract:
titanium sheets in pure molten aluminum at 750
and X-Ray Diffraction Analysis results, TiAl
intermetallic layer thickness increases slowly at primary stages. After that an enhanced growth rate occurs due to layer
cracking and disruption. Presumably, reaction starts with solving titanium into the molten aluminum causing in
titanium super saturation and TiAl
intermetallic layer which consequently leads to TiAl
energy of intermetallic layer formation and growth was developed by measuring titanium thickness decreases.
In this work, kinetics of intermetallic compounds formation in Al-Ti system was studied by immersingoC, 850 oC and 950 oC. According to Scanning Electron Microscopy3 is the only phase can form at the interface. Observations revealed that3 formation. At this stage, growth may be controlled by aluminum diffusion through3 formation at the interface of Ti-TiAl3. Furthermore, activation
M. R. Parsa, M. Soltanieh,
Volume 9, Issue 2 (june 2012 2012)
Abstract
In this research, the nickel oxide was dissolved in cryolite at temperatures of 880, 940 and 1000°C. In order to reduce the nickel oxide, aluminum was added to the salt. Simultaneously the nickel oxide was reduced and Al3Ni2 intermetallic compound was formed. In the duration intervals of 2.5-40 minutes samples of the salt and metallic phases were taken. The variation of the nickel content in metallic and salt samples was determined by the AAS. The results indicate that increasing the temperature and duration has a positive effect on the reduction process and Al3Ni2 intermetallic compound formation. The nickel content in the metallic sample has its highest amount at 1000°C in 10 minutes. Furthermore, practical results of the studies of nickel content variations in metallic and salt samples confirm the data obtained from theoretical calculations.