Leila Taghi-Akbari, Mohammad Reza Naimi-Jamal, Shervin Ahmadi,
Volume 20, Issue 4 (12-2023)
Abstract
Two-dimensional molybdenum disulfide (MoS2) is used as a promising flame retardant and smoke suppressant nano additive in polymer composites due to its high thermal stability and layered structure. In this study, thermoplastic polyurethane (TPU) was melt-blended with MoS2 (1wt. %) and a halogen-free intumescent flame retardant (IFR) system. The IFR system consisted of ammonium polyphosphate (APP), Melamine polyphosphate (MPP), and pentaerythritol (PER), with a total amount of 25 wt. %. The TPU/IFR/MoS2 composite exhibited outstanding flame-retardant properties, achieving a UL-94 V-0 rating and a limiting oxygen index (LOI) value of 34%. Reaction-to-fire performance of the TPU/IFR/MoS2 composite was evaluated by cone calorimeter test (CCT). The CCT results indicated high flame-retardant efficiency and considerable smoke suppression performance, along with a significant decrease in the peak heat release rate (PHRR: 65.9%), peak smoke production rate (PSPR: 65.6%), and peak CO production (PCOP: 60.7%) compared to the neat TPU. The significant improvement in fire performance of TPU composite was mainly attributed to the effects of the physical barrier of MoS2 and catalytic carbonization of the IFR system. These resulted in forming an intumescent compact carbonized layer during the combustion, effectively restricting dripping. The continuous structure of the residual char was revealed by FESEM. Thermogravimetric analysis (TGA) indicated improved thermal behavior of the TPU composite in high temperatures. This work provides an effective method to improve the reaction to fire of TPU composites by incorporating traditional IFRs and MoS2, resulting in enhanced fire safety.
Amit Bandekar, Pravin Tirmali, Paresh Gaikar, Shriniwas Kulkarni, Nana Pradhan,
Volume 21, Issue 1 (3-2024)
Abstract
The Mn-Zn ferrite with a composition of Mn0.25Mg0.08Cu0.25Zn0.42Fe2O4 has been synthesized in this study using the chemical sol-gel technique at a pH of 7. The sample was prepared and subsequently annealed at a temperature of 700°C. The nanocrystalline ferrite samples were subjected to characterization using X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Thermogravimetry (TG), and Differential thermal analysis (DTA). The findings of these observations are delineated and deliberated. The sample's phase composition was verified using X-ray diffraction examination. The crystalline size was determined using Scherrer's formula and was observed to be within the range of 20-75 nm. Two notable stretching bands were seen in the FTIR spectra within the range of 400-650 cm-1. The spinel structure of the produced nanoparticles was confirmed by these two bands. The magnetic characteristics of the powder were examined using a Vibrating Sample Magnetometer (VSM). The presence of M-H hysteresis loops suggests that the produced nanoparticles have superparamagnetic properties, as evidenced by their low coercive force, remanent magnetization, and saturation magnetization values.