Volume 1, Issue 2 (Jan 2004)                   IJMSE 2004, 1(2): 9-15 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

AKHLAGHI F., ZAHEDI H., SHARIFI M.. EFFECTS OF REINFORCEMENT VOLUME FRACTION, REINFORCEMENT SIZE AND SOLUTION HEAT TREATMENT ON THE MICROSTRUCTURE OF THE TWO DIFFERENTLY PROCESSED A35&SICPCOMOSITES. IJMSE 2004; 1 (2) :9-15
URL: http://ijmse.iust.ac.ir/article-1-24-en.html
Abstract:   (54001 Views)
In this study different volume fractions of SiC particles of various sizes were introduced into the semisolid A356 aluminum alloy by a mechanical stirrer. Then the slurry was poured into a permanent die of certain dimensions either when the metal alloy was partially solid (semisolid-semisolid or SS route) or after reheating to above the liquidus temperature of the alloy (semisolid-liquid or SL route). Both the SS and SL composite samples were solution-treated at 520°C for 8 hours followed by quenching in water at room temperature. Microstructural characterization studies have been conducted on both the SL and SS samples to quantify the effects of the size andcontent of the SiC particles as well as the solutionizing treatment on the morphology and size ofthe eutectic silicon particles and the matrix grain (globule) size. The results were rationalized in terms of the different nucleation, fragmentation, spherodization and coarsening events, which had taken place during the processing of these composites. Finally the impact of these microstructural features in improving the wear properties of the composites has been discussed.
     
Type of Study: Research Paper | Subject: Ceramics

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb